报告题目:Quasi differential calculi and cyclic opposite operad modules with pairingwith applications to hom-associative algebras
报告专家: 吕为国(中国科学技术大学)
报告时间: 2021年12月11日(周六),10:30-11:20
报告地点:理工H楼H113
报告摘要:We show that a cyclic opposite operad module over a nonsymmetric operad with multiplicationgives rise to a quasi differential calculus structure at the chain level and thus a Tamarkin-Tsygan calculus at the homology level. We define cyclic opposite modules with pairing and show that in this case the cochain complex of the nonsymmetric operads with multiplication is a Quesney homotopy Batalin-Vilkovisky(BV for short) algebraand thus its cohomology is a BV algebra.We apply our results to hom-associative algebras. We prove that the Hochschild homology and cohomology complexes of a strictly unital Hom-associative algebra form a quasi differential calculus. As a consequence, we deduce that the Hochschild homology and cohomology form a differential calculus. Furthermore, we also define a Hom-symmetric Frobenius algebra and prove that its Hochschild cochain complex is Quesney homotopy BV algebra, whose cohomology becomes a BV algebra.(joint work with Yu Ye and Guodong Zhou)
欢迎各位老师、同学届时前往!
数学科学学院
2021年12月8日
专家简介:吕为国,中国科学技术大学博士后。2019年6月毕业于华东师范大学数学科学学院,获得理学博士学位,主要研究Hochschild 上同调理论,已发表多篇SCI论文。