加入收藏  || English Version 
 
邹秀芬教授学术报告

  发布日期:2021-12-07  浏览量:10

报告题目: Data-driven mathematical modeling for SARS-COV-2 infection

告专家: 邹秀芬武汉大学 教授

报告时间: 2021129(),14:00-16:30

腾讯会议:https://meeting.tencent.com/dm/W8NMsasdHHBp

会议ID299-805-025

报告摘要Based on available data for COVID-19, we presented two mathematical models for SARS-CoV-2 infection. One is the coinfection of SARS-CoV-2 and bacteria to investigate the dynamics of COVID-19 progress. Another is a multi-scale computational model to understand the heterogeneous progression of COVID-19 patients. Combining theoretical analysis, numerical simulations and quantitative computations, we revealed that initial bacterial infection and immune-related parameters have great influences on the severity degree and mortality in COVID-19 patients. We further identified that T cell exhaustion plays a key role in the transition between mild-moderate and severe symptoms. In addition, we quantified the efficacy of treating COVID-19 patients and investigated the effects of various therapeutic strategies. These results highlight the critical roles of IFN and T cell responses in regulating the stage transition during COVID-19 progression.

欢迎各位老师、同学届时前往!

数学科学学院

                                            2021127

专家简介:

邹秀芬, 武汉大学数学与统计学院二级教授,博士生导师,中国工业与应用数学学会数学生命科学专业委员会副主任。长期从事数学与生物医学等交叉学科研究。近年来主持承担了国家自然科学基金重点项目、面上项目和科技部国家重大研究计划课题等科研课题。在癌症等复杂疾病的海量数据集成、多尺度建模和复杂疾病的优化控制等方面取得了一系列成果,已在PNAS”,“SIAM on Applied Mathematics”, “Applied Mathematical Modeling”, “PLOS Computational biology”, “Bulletin of Mathematical Biology”, “IEEE Transactions on Biomedical Engineering”等国际重要学术期刊上发表相关的学术论文。


打印此页】【顶部】【关闭
   
版权所有 ? 2007-2017 安徽大学数学科学学院 All rights reserved 皖ICP备05018241号
地址:安徽省合肥市九龙路111号安徽大学磬苑校区理工楼H楼 邮编:230601 E-mail:math@ahu.edu.cn
访问统计:自2013年9月1日以来总访问:1000  后台管理


彩神Ⅲ 彩神APP登录网址 网信彩票 彩神ll用户中心登录 彩神 六合联盟